Requiring chords in cycles

نویسنده

  • Terry A. McKee
چکیده

R. E. Jamison proved that every cycle of length greater than three in a graph has a chord—in other words, the graph is chordal—if and only if every k-cycle is the sum of k − 2 triangles. This result generalizes to having or not having crossing chords and to having strong chords, with similar characterizations of a variety of graph classes that includes chordal bipartite, distance-hereditary, and strongly chordal graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Double-crossed chords and distance-hereditary graphs

An early characterization of distance-hereditary graphs is that every cycle of length 5 or more has crossing chords. A new, stronger, property is that in every cycle of length 5 or more, some chord has at least two crossing chords. This new property can be characterized by every block being complete multipartite, and also by the vertex sets of cycles of length 5 or more always inducing 3-connec...

متن کامل

Excluding cycles with a fixed number of chords

Trotignon and Vušković completely characterized graphs that do not contain cycles with exactly one chord. In particular, they show that such a graph G has chromatic number at most max(3, ω(G)). We generalize this result to the class of graphs that do not contain cycles with exactly two chords and the class of graphs that do not contain cycles with exactly three chords. More precisely we prove t...

متن کامل

Annals of Edge Magic Total Labeling of the Cycle C n with P 3 Chords

In this paper, we have proved edge-magic total labeling of cycles with P3 chords.

متن کامل

The Linear Arboricity of Planar Graphs without 5-, 6-Cycles with Chords

The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. In this paper, it is proved that for a planar graph G with maximum degree ∆(G) ≥ 7, la(G) = d 2 e if G has no 5-cycles with chords.

متن کامل

The Linear Arboricity of Planar Graphs without 5-Cycles with Chords

The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. In this paper, it is proved that for a planar graph G with maximum degree ∆(G)≥ 7, la(G) = d(∆(G))/2e if G has no 5-cycles with chords. 2010 Mathematics Subject Classification: 05C15

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 297  شماره 

صفحات  -

تاریخ انتشار 2005